10 References

Allaire, J. J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., … Arslan, R. C. (2017a). rmarkdown: Dynamic Documents for R \[Computer software\]. Retrieved from https://cran.r-project.org/web/packages/rmarkdown

Allaire, J. J., R Foundation, Wickham, H., Journal of Statistical Software, Xie, Y., Vaidyanathan R., … Yu, M. (2017b). rticles: Article Formats for R Markdown \[Computer software\]. Retrieved from https://cran.r-project.org/web/packages/rticles

American Psychological Association. (2010). Publication Manual of the American Psychological Association (6th edition). Washington, DC: American Psychological Association.

Arslan, R. C. (2018). Automatic codebook generation with {codebook}. Retrieved from https://github.com/rubenarslan/codebook

Aust, F. (2016). citr: ‘RStudio’ Add-in to Insert Markdown Citations \[Computer software\]. Retrieved from https://cran.r-project.org/web/packages/citr

Aust, F., & Barth, M. (2017). papaja: Create APA manuscripts with R Markdown \[Computer software\]. Retrieved from https://github.com/crsh/papaja

Boettiger, C. (2015). An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems Review, 49(1), 71-79. DOI: http://www.doi.org/ 10.1145/2723872.2723882.

Chambers, C. D. (2013). Registered Reports: A new publishing initiative at Cortex. Cortex, 49(3), 609–610. DOI:  http://doi.org/10.1016/j.cortex.2012.12.016

Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D., & Etchells, P. J. (2014). Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience, 1(1), 4–17. DOI:  http://doi.org/10.3934/Neuroscience.2014.1.4

Chassang, G. (2017). The impact of the EU general data protection regulation on scientific research. Ecancermedicalscience, 11: 709 . DOI:  http://www.doi.org/ 10.3332/ecancer.2017.709

Chavan, V., & Penev, L. (2011). The data paper: a mechanism to incentivize data publishing in biodiversity science. BMC Bioinformatics, 12, Suppl 15, S2. DOI : https://doi.org/10.1186/1471-2105-12-S15-S2

Chirigati, F., Rampin, R., Shasha, D., & Freire, J. (2016). Reprozip: Computational reproducibility with ease. In Proceedings of the 2016 International Conference on Management of Data (pp. 2085-2088). ACM.

Donoho, D. L. (2010). An invitation to reproducible computational research. Biostatistics, 11(3), 385–388. https://doi.org/10.1093/biostatistics/kxq028

Eglen, S. J., Marwick, B., Halchenko, Y. O., Hanke, M., Sufi, S., Gleeson, P., … Poline, J.-B. (2017). Toward standard practices for sharing computer code and programs in neuroscience. Nature Neuroscience, 20(6), 770–773. DOI: https://doi.org/10.1038/nn.4550

Eubank, N. (2016). Lessons from a Decade of Replications at the Quarterly Journal of Political Science. PS: Political Science & Politics, 49(2), 273–276. DOI: https://doi.org/10.1017/S1049096516000196

El Emam, K. (2013). Guide to the de-identification of personal health information. Boca Raton, FL: CRC Press.

Gandrud, C. (2013a). Reproducible Research with R and Rstudio. Boca Raton, FL: CRC Press. https://github.com/christophergandrud/Rep-Res-Book

Gandrud, C. (2013b). GitHub: A tool for social data set development and verification in the cloud. Available at SSRN: https://ssrn.com/abstract=2199367 or http://dx.doi.org/10.2139/ssrn.2199367

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., … Evans, A. C. (2015). Reproducibility of neuroimaging analyses across operating systems. Frontiers in Neuroinformatics, 9. DOI: https://doi.org/10.3389/fninf.2015.00012

Gorgolewski, K. J., Margulies, D. S., & Milham, M. P. (2013). Making data sharing count: a publication-based solution. Frontiers in Neuroscience, 7, 9.

Gronenschild, E. H. B. M., Habets, P., Jacobs, H. I. L., Mengelers, R., Rozendaal, N., Os, J. van, & Marcelis, M. (2012). The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLOS ONE, 7(6), e38234. DOI: https://doi.org/10.1371/journal.pone.0038234

Hardwicke, T. E., Mathur, M. B., MacDonald, K. E., Nilsonne, G., Banks, G. C.,… Frank, M. C. (2018, March 19). Data availability, reusability, and analytic reproducibility: Evaluating the impact of a mandatory open data policy at the journal Cognition. Retrieved from https://osf.io/preprints/bitss/39cfb/

Houtkoop, B., Chambers, C., Macleod, M., Bishop, D., Nichols, T., & Wagenmakers, E. J. Data sharing in psychology: A survey on barriers and preconditions. Advances in Methods and

Practices in Psychological Science. Advance online publication. DOI: https://doi.org/10.1177/2515245917751886

Huff, K. (2017). Lessons Learned. In Kitzes, J., Turek, D., & Deniz, F. (Eds.). The Practice of Reproducible Research: Case Studies and Lessons from the Data-Intensive Sciences. Oakland, CA: University of California Press. Retrieved from https://www.gitbook.com/book/bids/the-practice-of-reproducible-research

International Consortium of Investigators for Fairness in Trial Data Sharing, Devereaux, P. J., Guyatt, G., Gerstein, H., Connolly, S., & Yusuf, S. (2016). Toward Fairness in Data Sharing. The New England Journal of Medicine, 375(5), 405–407. DOI: http://doi.org/10.1056/NEJMp1605654

Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The case for open computer programs. Nature, 482(7386), 485–488. DOI: https://doi.org/10.1038/nature10836

Keeling, K. B., & Pavur, R. J. (2007). A comparative study of the reliability of nine statistical software packages. Computational Statistics & Data Analysis, 51(8), 3811–3831. DOI: https://doi.org/10.1016/j.csda.2006.02.013

Kernighan, B. W., & Plauger, P. J. (1978). The Elements of Programming Style (2nd edition). New York: McGraw-Hill.

Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E., Piechowski, S., Falkenberg, L.-S., … Nosek, B. A. (2016). Badges to Acknowledge Open Practices: A Simple, Low-Cost, Effective Method for Increasing Transparency. PLoS Biology, 14(5), e1002456. DOI: https://doi.org/10.1371/journal.pbio.1002456.

Kitzes, K. (2017). The Basic Reproducible Workflow Template. In Kitzes, J., Turek, D., & Deniz, F. (Eds.). The Practice of Reproducible Research: Case Studies and Lessons from the Data-Intensive Sciences. Oakland, CA: University of California Press. Retrieved from https://www.gitbook.com/book/bids/the-practice-of-reproducible-research

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., … Jupyter Development Team. (2016). Jupyter Notebooks – A publishing format for reproducible computational workflows. In Proceedings of the 20th International Conference on Electronic Publishing (pp. 87–90). DOI: https://doi.org/10.3233/978-1-61499-649-1-87

Knuth, D. E. (1984). Literate Programming. The Computer Journal, 27(2), 97–111. DOI: https://doi.org/10.1093/comjnl/27.2.97

Leeper, T. J. (2014). Archiving Reproducible Research with R and Dataverse. R Journal, 6(1).

Lo, B., & DeMets, D. L. (2016). Incentives for Clinical Trialists to Share Data. The New England Journal of Medicine, 375(12), 1112–1115. DOI: http://doi.org/10.1056/NEJMp1608351

Long, J. S. (2009). The workflow of data analysis using Stata. College Station, TX: Stata Press.

Lin, W., & Green, D. P. (2016). Standard Operating Procedures: A Safety Net for Pre-Analysis Plans. PS: Political Science & Politics, 49(3), 495–500. DOI: https://doi.org/10.1017/S1049096516000810

Martin, R. C. (2009). Clean Code - A Handbook of Agile Software Craftsmanship. Upper Saddle River, NJ: Prentice Hall. Retrieved from http://ricardogeek.com/docs/clean_code.html

Meyer, M. N. (2018). Practical tips for ethical data sharing. Advances in Methods and Practices in Psychological Science. Advance online publication. DOI: https://doi.org/10.1177/2515245917747656

Morey, R. D., Chambers, C. D., Etchells, P. J., Harris, C. R., Hoekstra, R., Lakens, D., et al. (2016). The peer reviewers’ openness initiative: Incentivizing open research practices through peer review. Royal Society Open Science, 3(1), 150547–7. DOI: http://doi.org/10.1098/rsos.150547

Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., & Sliz, P. (2012). Shining Light into Black Boxes. Science, 336(6078), 159–160. DOI:  https://doi.org/10.1126/science.1218263

Piccolo, S. R., & Frampton, M. B. (2016). Tools and techniques for computational reproducibility. GigaScience, 5, 30. DOI:  https://doi.org/10.1186/s13742-016-0135-4

Staneva, V. (2017). Assessing Reproducibility. In Kitzes, J., Turek, D., & Deniz, F. (Eds.). The Practice of Reproducible Research: Case Studies and Lessons from the Data-Intensive Sciences. Oakland, CA: University of California Press. Retrieved from https://www.gitbook.com/book/bids/the-practice-of-reproducible-research

Rowhani-Farid, A., Allen, M., & Barnett, A. G. (2017). What incentives increase data sharing in health and medical research? A systematic review. Research Integrity and Peer Review, 2(1), 4. DOI: https://doi.org/10.1186/s41073-017-0028-9

Rowhani-Farid, A., & Barnett, A. G. (2018). Badges for sharing data and code at Biostatistics: an observational study. F1000Research, 7, 90. https://doi.org/10.12688/f1000research.13477.1

Rouder, J. N. (2016). The what, why, and how of born-open data. Behavior research methods, 48(3), 1062-1069. DOI: https://doi.org/10.3758/s13428-015-0630-z

Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten Simple Rules for Reproducible Computational Research. PLOS Computational Biology, 9(10), e1003285. https://doi.org/10.1371/journal.pcbi.1003285

Simonsohn, U. (2015). Small telescopes: Detectability and the evaluation of replication results. Psychological science, 26(5), 559-569. DOI: http://www.doi.org/10.1126/science.aab2374

Smith, R., & Roberts, I. (2016). Time for sharing data to become routine: the seven excuses for not doing so are all invalid. F1000Research, 5, 781. DOI: http://doi.org/10.12688/f1000research.8422.1

Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11, 702-712. DOI: https://doi.org/10.1177/1745691616658637

Stodden, V., & Miguez, S. (2014). Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research. Journal of Open Research Software, 2(1). DOI: https://doi.org/10.5334/jors.ay

Sweeney L. (2000).  Simple demographics often identify people uniquely. http://impcenter.org/wp-content /uploads/2013/09/Simple-Demographics-Often -Identify-People-Uniquely.pdf.

Thabane, L., Mbuagbaw, L., Zhang, S., Samaan, Z., Marcucci, M., Ye, C., et al. (2013). A tutorial on sensitivity analyses in clinical trials: the what, why, when and how. BMC Medical Research Methodology, 13(1), 92. DOI:  http://doi.org/10.1186/1471-2288-13-92

van ’t Veer, A. E., & Giner-Sorolla, R. (2016). Pre-registration in social psychology—A discussion and suggested template. Journal of Experimental Social Psychology, 67(C), 2–12. DOI:  http://doi.org/10.1016/j.jesp.2016.03.004

Vihinen, M. (2015). No more hidden solutions in bioinformatics. Nature News, 521(7552), 261. DOI: https://doi.org/10.1038/521261a

Welty, L.J., Rasmussen, L.V., Baldridge, A.S., & Whitley, E. (2016). StatTag \[Computer software\]. Chicago, IL: Galter Health Sciences Library. DOI: https://doi.org/10.18131/G36K76

Xie, Y. (2015). Dynamic Documents with R and knitr (2nd edition). Boca Raton, FL: CRC Press.